Particle Filtering Optimized by Swarm Intelligence Algorithm
نویسندگان
چکیده
A new filtering algorithm — PSO-UPF was proposed for nonlinear dynamic systems. Basing on the concept of re-sampling, particles with bigger weights should be re-sampled more time, and in the PSO-UPF, after calculating the weight of particles, some particles will join in the refining process, which means that these particles will move to the region with higher weights. This process can be regarded as one-step predefined PSO process, so the proposed algorithm is named PSO-UPF. Although the PSO process increases the computing load of PSO-UPF, but the refined weights may make the proposed distribution more closed to the poster distribution. The proposed PSO-UPF algorithm was compared with other several filtering algorithms and the simulating results show that means and variances of PSO-UPF are lower than other filtering algorithms.
منابع مشابه
Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملDecision Based Median Filter using Particle Swarm Optimization for Impulsive Noise
Decision Based Median Filter using Particle Swarm Optimization for Impulsive Noise Bharathi P. T and Dr. P. Subashini Ph.D Research Scholar Professor, Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, University, Coimbatore, Tamil Nadu, India _____________________________________________________________________________________ Abstract: In...
متن کاملChaotic Particle Swarm Optimized Kriging Model for Curve Fitting
Chaotic particle swarm optimization (CPSO) algorithm is proposed to optimize the Kriging model, which can improve the precision of curve fitting. A typical example is selected to demonstrate the advantage of the optimized Kriging model, compared with other curve fitting tools.
متن کاملA Smarter Particle Filter
Particle filtering is an effective sequential Monte Carlo approach to solve the recursive Bayesian filtering problem in non-linear and non-Gaussian systems. The algorithm is based on importance sampling. However, in the literature, the proper choice of the proposal distribution for importance sampling remains a tough task and has not been resolved yet. Inspired by the animal swarm intelligence ...
متن کاملPSO optimized Feed Forward Neural Network for offline Signature Classification
The paper is based on feed forward neural network (FFNN) optimization by particle swarm intelligence (PSI) used to provide initial weights and biases to train neural network. Once the weights and biases are found using Particle swarm optimization (PSO) with neural network used as training algorithm for specified epoch, the same are used to train the neural network for training and classificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JILSA
دوره 2 شماره
صفحات -
تاریخ انتشار 2010